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Abstract. Using low-cost piezoelectric sensors to sense real structural
vibration exhibits great potential in augmenting structural engineering,
which is yet to be explored in the literature to the best of our knowl-
edge. An example of such unexplored augmentation includes classifying
diverse structures (such as buildings, flyovers, foot over-bridge, etc.). To
explore these aspects, we develop a low-cost piezoelectric sensor-based
vibration sensing system aiming to collect real vibration data from diver-
sified civil structures remotely. We dig into our collected sensed data to
classify five different types of structures through rigorous statistical and
machine learning-based analyses. Furthermore, we design a lightweight
Convolutional Neural Network architecture and perform necessary hy-
perparameter tuning to achieve better accuracy in classification. Our
analyses achieve a classification accuracy of up to 97% with an F1 score
of 0.97.

Keywords: Structure classification · Structural vibration · Piezoelectric
sensor · Time domain signal · Sensor systems.

1 Introduction

In the domain of Structural Engineering, vibration pattern of civil structures
exhibits applications in diversified areas such as designing architectures of the
structures, Structural Health Monitoring, occupancy estimation, etc., [12, 19].
In the case of designing architectures, every structure follows specific vibration
criteria that should be fulfilled when designing the structure. Concrete struc-
tures such as buildings, concrete foot overbridges, etc., are generally considered
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to generate less vibration. On the other hand, steel foot overbridges, suspen-
sion bridges, etc., generate more vibration. These characteristics are very crucial
when designing the architecture of a structure as misinterpretation of any of the
characteristics or even ignorance of any of them may result in possible damage
or structural health hazard in the future.

Due to the importance mentioned above, the dynamics of structural vibra-
tion have been investigated by several recent research studies [16, 24, 23, 4].
However, these approaches lack some important considerations. Most of the ex-
isting studies consider a single structure, i.e., bridge, building, rail line, wind
turbine, machine structures, etc., [3, 14, 26, 21]. However, a study covering di-
verse civil structures is yet to be explored in the literature to the best of our
knowledge. There exist research studies on implications of vibration generated
by civil structures, e.g., structure and machine fault classification, engine classi-
fication, human identification, etc., from the pattern of vibration [16, 3, 1, 11].
However, classifying diverse structures from their vibration patterns is yet to be
explored in literature. The relation only pertains to frequency domain specially
applicable for vibration data collected using high-cost sensors [19]. It is yet to be
explored how the relationship would be in the case of vibration data collected
using low-cost sensors. Moreover, it is important to know whether the relation-
ship in the case of vibration data collected using low-cost sensors would work in
the conventional frequency domain or it would get shifted to any other domain
(such as the time domain).

Keeping all these considerations in mind, in this paper, we present a novel
approach to classifying diversified civil structures based on their generated vi-
bration. To do so, first, we devise and develop a low-cost piezoelectric vibration
sensing module. Using the vibration sensing module, we build a diverse dataset
by sensing vibration from five different types of civil structures after a year-long
on-field data collection. We show that there is a significant difference in vibration
generated by different types of civil structures and the structures can be classi-
fied based on their generated vibration patterns. To the best of our knowledge,
this finding is yet to be revealed in the literature.

The overall methodology of our study includes developing a customized sens-
ing system, deploying the sensing system in a real environment, sending vibration
data to the cloud and storing the vibration data there, visualizing the data on a
real-time dashboard, performing statistical and machine learning-based analyses
for structure classification Here, for our machine learning-based classification, we
perform feature selection according to correlation and regression. Further, for
Deep learning-based analysis, we perform hyperparameter tuning, i.e., tuning
batch size, kernel size, number of filters, and activation function.

Based on our study, we make the following set of contributions in this paper.

– We design and develop a low-cost vibration sensing module using the piezo-
electric sensor. Using the sensing module, we collect real vibration data from
12 different civil structures having five different categories through a year-
long on-field study.
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Fig. 1: No significant frequency component after FFT

– We classify the five categories of civil structures based on their generated
vibration through statistical and machine learning-based analyses. Further,
to achieve better accuracy, we develop a customized Deep Neural Network
and utilize it for the classification task.

Our contribution in classifying structures from their time domain vibration
may contribute in the future in the field of SHM through classifying faults in
structures. In this study we have not devised any SHM solution, rather proposed
a new aspect of structure classification which may contribute to the time domain
signal processing in SHM.

2 Related Work

In this section, we discuss existing studies in the field of vibration and its appli-
cations.

2.1 Vibration source detection

There have been several studies on detecting the source of vibration through
different sensor-based data analytics [16, 24, 23, 11]. For example, Kucukbay
et al., [16] classified human, vehicle, and animal-induced acoustic and vibration
data. According to the type of vibration data, their proposed system triggers a
camera event as an action for detecting intruders (human or vehicle). Besides,
Rivas et al., [24] proposed a wireless sensor network on the road that can precisely
detect the presence of vehicles. Their proposed system can calculate vehicle speed
and travel direction from Accelerometer data. Sigmund et al., [26] showed that
vibration sensed from distant vehicles may be used to help in identifying key
vehicle features such as engine type, engine speed, and the number of cylinders.

Garrity et al., [11] classified the category of vehicles in an airport by distin-
guishing flight landing and vehicle movement on the runway. They developed
an automated real-time monitoring and alert system that integrates GUI-based
software to handle data collection and analysis. For data collection, they used a
2-axis Accelerometer.

Masfiqur Rahaman
Highlight



4 Rahman et al.

Berlin et al., [4] classified train type and estimated train length from data ac-
cumulated by 3D MEMS Accelerometer. They studied Europe’s busiest railroad
sections and collected vibration patterns of 186 trains. They classified them into
six categories using various methods. Chakraborty et al., [8] proposed a WSN-
based automated system that can sense vibration induced by a running train
from a long distance and can detect if there is any missing rail block on the
track so that it can inform the train driver about a possible accident ahead.

2.2 Structural damage detection

Identifying structural damage is another important study in Struc-
tural Engineering. There have been several studies in recent years
regarding vibration-based Structural Health Monitoring (SHM)
[18, 31, 9, 8]. For example, Lee et al., [18] presented an effective method
for damage estimation of steel girder bridges using ambient vibration data.
They used the frequency domain decomposition technique to identify modal
perimeters.

Goyal et al., [12] presented the most used signal processing techniques in
SHM such as time series models, wavelet transform, and HHT. Magalhaes et
al., [21] installed a dynamic monitoring system in a concrete arch bridge at the
city of Porto, in Portugal. They proposed a strategy to minimize the effects
of environmental and operational factors on the bridge’s natural frequencies,
enabling the identification of structural anomalies.

Zonzini et al., [33] proposed a sensor network that can be used with either
MEMS accelerometers or piezoelectric sensors to extract modal parameters of
structures. Testoni et al., [30] proposed a sensor network based on low-power,
low-cost, and lightweight MEMS sensor nodes to measure the tilt angles of struc-
tures.

2.3 Machine fault detection

Another important field of study is classifying faults in machine structures from
their vibration characteristics. There have been many studies regarding such
fault detection and classification [14, 1, 3, 7, 13, 5]. Joshuva et al., [14] developed
a data model for a multi-class wind turbine blade fault diagnosis. From acquired
Accelerometer data, they developed several models using data modeling tech-
niques. Ahmed et al., [1] presented an engine fault detection and classification
technique using vibration data. They built a four-stroke gasoline engine for ex-
perimentation. Their proposed fault diagnostic system can detect known engine
faults with various degrees of severity.

From the study of existing literature, we find studies focusing on vibration
source detection, structural damage detection, and machine fault detection. How-
ever, classifying structures from their vibration characteristics is still unexplored
in the literature. Nonetheless, existing studies are mostly based on high-cost sen-
sors and focused on the frequency domain. Thus, it has to be investigated whether
we can still work on the frequency domain or not while using the low-cost sensors.
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Fig. 2: Illustration of our proposed methodology on classifying structures.
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Fig. 3: Our proposed system architecture: sensing, communication, computation,
power supply, and maintenance dashboard

3 Methodology

In this study, first, we build the sensing module and deploy it on the surfaces of
building floors, flyover/overbridge spans, and rail-block to collect vibration data.
We collect and store collected vibration data in a database in real time. Then,
based on the collected vibration data, we formulate the problem of identifying
the source of a structure as a classification problem and attempt to solve it. A
brief overview of our proposed methodology is illustrated in Figure 2.

The most straightforward approach to classify structures involves directly
performing the Fast Fourier Transform on the vibration signal, and then looking
for the fundamental frequency component for the signal. So, we first remove
DC components from the time domain signal as shown in Figure 1a. However,
as shown in Figure 1b, after FFT, we do not observe any obvious frequency
component. As a result, the classical approach of exploring the fundamental
frequency of the structure fails in the case of low-cost piezoelectric sensors. Also,
we can not address the comparison between the response of the accelerometer and
piezoelectric sensor as existing studies focused on the frequency responses of the
accelerometer and we can only analyze the time domain response of piezoelectric
sensors [12, 19, 21].

Hence, we move forward to time-domain analysis. In the time domain, we
first extract different statistical features from raw data points. We label the data
according to their sources. In our study, we explore five different sources covering
building, flyover, steel overbridge, concrete overbridge, and rail line. We collect
vibration data from 12 different locations in Dhaka city covering the above-
mentioned five classes of structures. For flyover, we collect data for multiple
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Fig. 4: Hardware components and circuit diagram of sensing module

spans. In the case of a building, we collect data from every floor. Subsequently, we
train several classification models to classify each type of structure. We present
detailed results and findings in Section 6 and 7.

4 Proposed sensing system

tended tasks, we design and develop a customized sensing system. Here, we use
low-cost components to make sure that the whole system remains low-cost in
nature. The main components of our system include a sensing module, compu-
tational module, communication module, power supply module, and a real-time
dashboard. Figure 3 shows the architecture of our proposed system and Figure 4a
shows the hardware setup. We elaborate on each of the components below.

Sensing module: We use a low-cost piezoelectric disc [28] to sense the ambient
vibration of structures. We use a 200 gm weight bar on top of the piezo sensor to
fix the piezo disk and get a stable signal as shown in Figure 4a. The total average
weight of our system is around 250-300 gm. The raw analog signal collected by
the piezoelectric disc is first amplified through an amplification circuit as shown
in Figure 4b. We choose the LM358P as the operational amplifier which is a low-
power dual operational amplifier. The natural frequency of a bridge and other
concrete-made structures varies in the range of 2-4 Hz, but values 0-14 Hz have
also been reported [2]. LM358P’s cutoff frequency is 200 Hz which is favorable
considering the input signals’ frequency response.

The amplification factor of the amplifier circuit is 100. We have also tried am-
plification factors of 200, 500, and 1000. However, for some structural vibrations,
the signal cuts at the analog value of 1023 for an amplification factor greater
than 100. Also, the more the amplification factor, the more the power consump-
tion. That is why we chose the amplification factor of 100. Then, we feed the
amplified signal to a 10-bit analog-to-digital converter (ADC) on an Arduino
Mega [27] whose range is 0 to 5 V having the maximum sampling frequency of
9615 Hz which is greater than the operational amplifier’s output signal (200 Hz).
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Table 1: Cost analysis of necessary hardware equipment
Component name Model name Quantity Unit price (USD)

Piezoelectric sensor 7BB-20-6L0 1 1

Amplifier LM358P 1 6

Resistor 1M,1K,100K 4 0.25

Zener Diode 5 V 1 0.5

Capacitor 0.1 uF 1 0.5

Microcontroller Arduino Mega2560 1 14

GSM Module SIM900a 1 16

Power supply
Polymer Lithium Ion
Battery - 1000mAh

1 10

Total price 50 USD per node

Thus, the choice of LM358P supports both the input signals’ frequency response
and the sampling frequency of ADC.

Computational module: We use the Arduino Mega 2560 as our computational
module. It takes sensed data from the sensing module at an interval of eight
seconds. Subsequently, it determines 12 statistical features from the captured
time-series data. The statistical features are mean, median, mode, standard
deviation, max, min, rms, the total number of peaks, average of peak values,
skewness, kurtosis, and crest factor.

Communication module: We use SIM900A [29], which is a GSM-based de-
vice, to send statistics of our sensed data to the server in real-time. The use of
SIM900A gives robustness to our system by providing network support outside
the home or office where WiFi or broadband is not available. This is why we can
deploy our sensing module at diversified places covering the structures, such as
flyovers, overbridges, and rail lines.

Power Supply module: We can choose either direct or battery power options
as a source of power. In room environment, we use a direct power supply unit
with a 220 V to 5 V adapter. For outdoor cases such as flyovers and overbridges,
we use a 5V 1000 mAh battery as the source of power.

Real-time dashboard: We send the statistical measurements from the collected
raw data as an HTTP post request in a URL which is then stored in a database.
We develop a dashboard to display the data points in real time.

Table 1 presents a breakdown of the equipment cost of our proposed sensing
system. The equipment cost of the system is 50 USD per unit, which is compa-
rable to that of a widely adopted smartphone unit. Thus, our system exhibits
the potential to be a ubiquitous solution.

5 System deployment

We deploy our sensing module in 12 different locations in Dhaka city. This en-
ables sensing from 12 structures having five different categories among them.
The five different categories are flyover, building, steel overbridge, concrete over-
bridge, and rail line. In all cases, we place the sensor on a horizontal surface to
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(a) Overbridge (b) Flyover (c) Building (d) Railline

Fig. 5: Deployment of sensor nodes on different structures

sense vertical vibration. Figure 5 shows some snapshots of such deployment. A
brief overview of the position of nodes, duration of data collection, and charac-
teristics of structures is presented in Table 2

In the case of flyover, we consider four different spans for data collection. We
choose the middle of each span to deploy our sensing module so that maximum
vibration can be captured. Besides, we deploy the module on both the left and
right sides of the flyover to achieve symmetry as well as diversity.

We collect data from four academic and residential buildings. In each build-
ing, data from every floor contribute to our dataset. In the case of two of the
buildings, the vibration of two columns contributes to the dataset.

In the case of foot overbridge, Our dataset contains data collected from four
different steel-made and one concrete-made foot overbridges. When we collect
data from these structures, varying numbers of crowds: light, medium, and dense
are crossing over the bridges. We collect data for at least 2 different positions on
each overbridge.

We also cover rail lines. In rail lines, data from both meter gauge and broad
gauge lines, contribute to the dataset. Here, the data is collected only when no
train passes by. We cover crossings over rail lines where buses, cars, bikes, cycles,
and people cross rail lines from one side to another.

As mentioned earlier a web server keeps all data collected by the sensor. We
organize the data by location and type of structure and store them accordingly.
From all structures under investigation, we collect data of a total interval of 4
hours and 20 minutes. As we have on average 200 data points at each second,
our dataset contains a summary of a total of 3 million raw data points. To be
specific, our dataset contains 1,159 summary data points.

After collecting the time-series data, we extracted 12 statistical features from
those data points. Table 3. shows some sample entries in our dataset.

6 Classifying structures from vibration data

We perform different visualization methods, statistical analysis, and learning-
based analysis over the collected data using scikit-learn version 0.23.1 [17]. The
analyses help to visualize the data effectively and at the same time signify the
possibility of better classification.
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Table 2: Details of different structures (node positions, duration of data collec-
tion, structural demographics, etc.) where sensor module is deployed

Flyover #Spans covered Duration (minutes) Deployment position

Flyover-1 5 30 On surface of road

Building Type of building #Floors Duration (minutes) Deployment position

Building-1 Office 11 60 Floor, column

Building-2 Office 5 30 Floor, column

Building-3 Office 3 10 Floor

Building-4 Residential 4 20 Floor

Foot overbridge Type of overbridge Crowd density Duration
(minutes)

Deployment position

Overbridge-1 Steel-made High 10 Middle of span

Overbridge-2 Steel-made Medium 10 Middle of span

Overbridge-3 Steel-made Low 20 Middle of span

Overbridge-4 Steel-made High 10 Middle of span

Overbridge-5 Concrete-made High 10 Middle of span

Railline Line type #Tracks Duration
(minutes)

Deployment position

Railline-1 Meter and broad gauge 2 30 Attached with steel block

Railline-2 Meter and broad gauge 2 20 Attached with steel block

Table 3: A small portion of our dataset (single row is shown from each type of
structures)

Mean Mode Median
Standard
deviation

Max Min RMS
Number of

peaks
Average of
peak values

Skewness Kurtosis
Creast
factor

Type of
structure

20.16 19 21 10.38 96 0 22.68 651 26.59 1.9 10.03 4.23 Building

28.21 0 0 35.72 255 0 45.52 579 66 1.68 3.68 5.6 Flyover

62.86 5 63 1.89 66 37 62.89 498 63.77 -4.81 49.46 1.05 Railline

154.67 0 0 178.66 747 0 236.31 613 297.05 1.19 0.85 3.16 Steel overbridge

24.9 68 0 24.45 259 0 34.9 630 44.88 1.78 7.29 7.42 Concrete overbridge
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Fig. 6: Graphical representation of clusters formed by different structures
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6.1 Visualization of data

To better visualize the data, we use principle component analysis (PCA). This
reduces feature dimension from 12 to two principal components and forms clus-
ters of the same type of structures as shown in Figure 6a. We also conduct
T-distributed Stochastic Neighbor Embedding, and Factor Analysis for better
visualization. We present the outcomes of all these analyses in Figure 6. These
figures clearly portray that there is a significant difference in the vibration of
the five structures.

6.2 Correlation between statistical features and the type of
structure

We use Pearson’s correlation coefficient (pearsonr() available in scipy stats pack-
age [17]) to identify- 1) how different statistical features and the type of structure
are correlated with one another, and 2) whether there exists any statistically sig-
nificant association (r >= 0.4 and p < 0.00005) [25]. Here, we first generate the
correlation matrix, and then then we determine the prediction values of the re-
gression matrix. In a correlation matrix, the feature having the highest absolute
correlation coefficient value is highly related to the type of structure. On the
other hand, in a regression matrix, the feature with the least prediction value is
highly significant to the type of structure.

Table 4 shows the correlation and prediction values for all the features with
the different types of structures. The table demonstrates that RMS, an average of
peaks, mean, standard deviation, and max exhibits strong correlation values. The
same features also exhibit the lowest prediction values. Thus, we can deduce that
RMS, average of peaks, mean, standard deviation, and max are highly significant
features in terms of getting correlated. Accordingly, we conduct further analysis
on classifying the type of structure using machine learning algorithms based on
the selected five features.

6.3 Machine Learning for classifying structures

We apply several machine learning algorithms to our prepared dataset. Here, we
formulate the task of predicting the type of structure from associated feature
values as a classification problem where each class corresponds to one of the
five different structures. The accuracy in our case corresponds to the number of
correctly classified instances over the number of total test instances. We calculate
different performance metrics such as precision, recall, and F-measure in this
regard. We use 10-fold cross-validation for training each model. Then we conduct
testing of each classifier model on unseen data points. In all cases, we maintain
the ratio between the training and testing dataset as 8:2.

Table 5 presents the performance of all the classifiers under consideration.
Among these classifiers, k-NN, RandomForest, and RandomTree perform the
best in the metrics of accuracy, precision, recall, and F-measure. Among them,
k-NN (for k=1) shows 91% accuracy and outperforms others. For optimizing the
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Table 4: Correlation matrix and regression matrix(p-value) of type of structure
with all features

Features Correlation value Prediction value

Mean 0.716656053 0.000000023

Median 0.090901681 0.190540928

Mode 0.154416336 0.025589244

Standard deviation 0.584570249 0.00000163

Max 0.406880713 0.000000041

Min 0.26979996 0.000078

RMS 0.784558941 0.000000001

Number of peaks -0.274614018 0.0000572

Average of peaks 0.756443394 0.000000017

Skewness 0.228503295 0.000875476

Kurtosis 0.123029244 0.075948388

Creast factor 0.195535324 0.004549568

Table 5: Performance matrix of some classifiers
Classifier Accuracy(%) Precision Recall F-Measure

k-NN(k=1) 91 0.92 0.91 0.91

RamdomForest 90 0.92 0.90 0.90

RandomTree 89 0.90 0.89 0.89

Bagging 84 0.88 0.84 0.84

DecisionTable 80 0.82 0.80 0.79

NaiveBayes 71 0.66 0.72 0.67
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value of k, here, we cross-validate the k-NN model for k out of the range from 1
to 30 with the training dataset. Our cross-validation results show that when the
value for k is 1, validation accuracy exhibits the highest value.

Figure 7 presents a normalized confusion matrix for k-NN (k=1). Here, among
five structures, the flyover gets misclassified as a building or steel overbridge sev-
eral times. Also, concrete overbridge gets misclassified as building and flyover
in some cases. This leads to a high false-positive rate for flyover and concrete
overbridge. The cause behind this is a lower number of data points for flyover
and concrete overbridge as we cover only one flyover and one concrete overbridge
in our data collection phase. Another reason is the fact that both concrete over-
bridges and flyovers are made of concrete. Thus, there can be a similarity of
vibration for these two types of structures. Building, steel overbridges, and rail
lines, on the other hand, get no false positive or false negative case. This is be-
cause we have a substantial amount of data points for buildings, steel overbridges,
and rail lines. Also, vibration propagates more through metal structures, and,
more importantly, in a more distinctive manner. Now, as there exists substantial
room for further improvement, we employ Deep Learning for this purpose next.

7 Deep Learning

Among the 12 features in our dataset, we chose five features according to the
correlation between the features and target classes. However, all models exhibit
at most 90% accuracy except k-NN. Even k-NN exhibits substantial error in
classifying two classes (flyover and concrete overbridge). This suggests that a
more advanced feature extraction method might be required for better perfor-
mance. Therefore, we employ Deep Convolutional Neural Network (CNN) which
has shown excellent performance for different sensor-based classification tasks
[22, 32]. In this regard, we propose a customized Deep Convolutional Neural
Network for our intended task. In the next subsections, we demonstrate the
architecture of our designed model and explain the experimental results.

7.1 Model architecture

The convolution block of our model consists of five convolutional layers. The
input shape to this convolution block is n× 1× 12 where n is the batch size and
the number 12 is for all the 12 features from raw vibration data. The kernel size
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Fig. 9: Kernel density estimation plot of the 256 experiments for each of the
hyperparameters. In Figure (d), the numbers 1, 2, 3 and 4 indicate ‘ReLU’,
‘ELU’, ‘Tanh’ and ‘Sigmoid’ activation functions respectively.

Table 6: Network parameters
Layers. Output Size Kernels

Input 1 × 12 -

Conv1D & elu 12 × 32 f = 32,K = 3, s = 1

Conv1D & elu 12 × 64 f = 64,K = 3, s = 1

Conv1D & elu 12 × 128 f = 128,K = 3, s = 1

Conv1D & elu 12 × 256 f = 256,K = 3, s = 1

Conv1D & elu 12 × 512 f = 512,K = 3, s = 1

Globalaveragepooling1D 1 × 512 -

Fully connected 1 ×N -

* here f , K, s, and N represent the number of filters, kernel length, filter stride, and
the number of classes respectively.
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for each convolutional layer is 3 × 3. To learn a rich set of features, we increase
the number of filters exponentially with the depth of the layers. The number of
filters at the rth convolutional layer is 2r × q where 0 <= r < 5 and the value of
q is selected as 32. The convolution operations are usually followed by activation
functions that introduce non-linearity in the network. In our proposed model,
we use the Exponential Linear Unit (ELU) as our activation function, which is
defined as:

f(x) =

{
x x > 0

α ∗ (ex − 1) x ≤ 0
(1)

Our choice of hyperparameters is explained in the following subsection. We
use a Globalaveragepooling layer after the convolutional block to minimize the
learnable parameters. Finally, we use a fully connected layer with N number
of output neurons along with softmax activation function to map the N class
scores to N probability values p = [p1, p2, ...., pN ] for each class, which sums up
to 1.

We present an overview of the whole architecture in Figure 8 and table 6.

Table 7: Model performance on training phase
Training accuracy Validation accuracy

97.7% 96.7%

Table 8: Model performance on testing phase
Testing accuracy Precision Recall F-Measure

97.1% 0.97 0.97 0.97

7.2 Experimental setup

The model hyperparameters for our network contain batch size, kernel size, num-
ber of filters, and activation function. Here, we vary the batch size to 50, 100,
200, and 400. Besides, we vary kernel length as 1, 2, 3, and 4. We also vary the
number of filters (q) for the first convolution layer as 4, 8, 16, and 32.

At first, we split the dataset into 70% training set, 10% validation set, and 20%
test set. We use 10-fold cross-validation to find the value of the hyperparameters.
This results in a total of 10×256 experiments. Here 10 is the total number of folds.
The number 256 is the number of possible combinations of hyperparameters.
Some possible combinations of hyperparameters (batch size, kernel size, number
of filters, activation function) are (50, 1, 4, Tanh), (50, 2, 32, ELU), (200, 2,
4, ReLU), etc. The average results of the 256 experiments over the 10 folds
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Fig. 10: Normalized confusion matrix of testing phased in deep learning based
approach

are shown as kernel density estimation plots in Figure 9. It is evident that a
combination of batch size 100, kernel length 3, number of filters 32, and the
‘ELU’ activation function achieves the highest validation accuracy. Based on
these results, we set the hyperparameters in our model as (100, 3, 32, ELU).
All of the experiments regarding training, testing, and hyperparameter tuning of
the networks are performed in Kaggle kernel environments which provide Nvidia
K80 GPUs [20]. We write necessary codes in Python and implement the neural
network models using the Keras API with TensorFlow in the back-end [10, 6].

7.3 Results

We evaluate the performance of our Deep Learning-based model over the col-
lected dataset in two stages. At first, we evaluate the performance of our model
in the training phase with 10-fold cross-validation. In each fold, we train the
model for 1000 epochs. We use Adam [15] as an optimizer with an initial learn-
ing rate of 10−2. We also use a learning rate decay factor of 0.8 if the validation
accuracy does not improve for 10 consecutive epochs. Table 7 represents the
average training accuracy and validation accuracy of this experiment.

In the second stage, we evaluate our model over unseen test data, which
can be of untrained buildings, rail lines, steel overbridges, and concrete over-
bridges. As we collect data from only one flyover, we use it for both training and
testing. Among the 10 models from every 10 folds, we choose the best model
having the highest validation accuracy. Then, we evaluate the model over sev-
eral performance metrics, such as accuracy, precision, recall, and F1-score. Our

Masfiqur Rahaman
Highlight
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Deep Learning-based model outperforms the best-found machine learning-based
k-NN (91%) in terms of all performance metrics. Table 8 presents values of all
performance metrics.

Figure 10 presents a normalized confusion matrix for the test set evaluation.
Among the five structures, the flyover gets misclassified as concrete and steel
overbridge for few times, though the false positive rate here is less compared to
machine learning-based approach as in Figure 7. This happens as we cover only
one flyover in our data collection phase, resulting in a relatively smaller amount
of data. Besides, both concrete overbridge and flyover are made of concrete,
and thus there can be a similarity of vibration between these two structures.
Nonetheless, building and rail lines get no false positive or false negative case.

The reason for Deep Learning based approach performing better is that Deep
Learning does not require any feature selection procedure. On the other hand,
in our machine learning based approach, we select five statistical features among
12 from our dataset according to our analysis on correlation and significance.
However, in our Deep Learning based approach we take all of the 12 features
ignoring their correlation and significance. This helps in learning of our model
significantly, and thus, in achieving a higher accuracy.

8 Conclusions

Analyzing the dynamics of vibration for diversified civil structures is little ex-
plored in literature - especially from the perspective of using low-cost vibration
sensing. Therefore, in this study, we analyze the dynamics in depth by devising
and utilizing a low-cost vibration sensing module. Our sensing module continu-
ously uploads statistical features extracted from raw vibration data to a remote
cloud server and we can visualize the data points through an interactive dash-
board in real-time. We then explore different machine learning algorithms to
classify different structures by collected vibration data, which gives an accuracy
of up to 91%. We build a Deep Neural Network and tune its hyperparameters
for improvements resulting in an accuracy of up to 97%.

One fundamental paradigm shift realized in our study is that We explore
the time domain of vibration while analyzing the vibrations generated by the
different civil structures, as only this domain exhibits considerable values in the
case of using low-cost vibration (piezoelectric) sensors. This clearly differs from
the existing research studies, which explore the frequency domain of vibration
while analyzing the vibrations generated by civil structures, as frequency domain
exhibits considerable values in the case of using high-cost vibration sensors.

Moving forward, there are several scopes for future studies. Examples include
- (1) tuning the time series window size, which is considered as eight seconds
in this paper, (2) evaluating the power consumption of the system to confirm
long-term energy efficiency, (3) comparing our proposed system with existing
high-cost accelerometer and geophone-based systems, and (4) exploring specific
applications of the proposed sensing module in structural health monitoring.
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